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Supplementary Material

A. User Study

In this section, we further conduct a user study to eval-
uate the effectiveness of our approach. We compare our
method with the baselines mentioned for both human-like
characters videos (AnimateAnyone [18], MagicPose [6],
ISculpting [65]) and nonhuman-like object videos (Dra-
gAnything [57], MotionBooth [56], ISculpting [65]).

The user study includes 30 animations. For each anima-
tion, participants were shown the original input image and
rendered videos, followed by animations generated by the
baseline methods and our approach, arranged in random or-
der. Each animation was repeated three times to ensure par-
ticipants had ample time to assess and compare the results.
Participants were then asked to answer three questions by
selecting the best option:
• Alignment: Select the video that best preserves the mo-

tion of the objects and camera in the rendered video and
the appearance of the input image.

• Consistency: Select the video with the least flicker.
• Overall quality: Select the video with the fewest arti-

facts.
We collected a total of 24 questionnaires from partici-

pants aged 20 to 55, including 7 with CG and CV back-
grounds and 17 from other fields. The results of the user
study, as shown in Fig. 10, indicate that our method out-
performs the other methods in all three factors. It achieved
preferred rates of 0.811 and 0.814 for alignment, 0.856 and
0.814 for consistency, and 0.844 and 0.828 for video qual-
ity.

B. Ablation Study

Single Stage vs. Two Stages. We conducted an abla-
tion study using a single-stage approach, where the input
image served as the first frame, and geometric guidance
was applied as described in Sec.3.3. As shown in third row
of Fig.8, the sea turtle loses texture because the image-to-
video model struggles when the first and subsequent frames
differ substantially. Moreover, the water color shifts over
time due to accumulated errors, whereas our two-stage ap-
proach preserves the input image’s visual details throughout
the entire video sequence.
Reconstructed 3D Background Meshes. As discussed
in Sec.3.1, we reconstruct the mesh for the background
as well, which offers two key advantages. First, recon-
structed meshes enable meaningful interactions with the
background. For instance, as shown in the first panel of

Fig.9, our method allows the goose to walk behind the fire
hydrant, even when it is partially occluded. In contrast, us-
ing the image plane as the background restricts the goose to
the frontal plane, causing it to block the fire hydrant rather
than moving behind it. Second, the reconstructed back-
ground meshes provide 3D guidance after camera move-
ment. By comparison, relying on the image plane results in
an invisible black region when the camera moves, as shown
in the second panel of Fig. 9, where the camera moves back-
ward. While the diffusion model can fill in the black re-
gion using its generalization capability, the generated con-
tent is often unrealistic, such as additional goal frames or
soccer balls. In contrast, our reconstructed meshes guide
the expanded scene, ensuring that the result is more realis-
tic. Third, background reconstruction facilitates large cam-
era movement in video generation, as shown in Fig. 12.
3D-Guided Video Generation vs. Video Refinement We
also conduct an ablation study using video refinement to
evaluate the effectiveness of our 3D-guided video genera-
tion method, as shown in Fig. 11. Following the Renoise
strategy [11, 34], we add random noise to the video up to
a certain noise level and then denoise it to obtain refined
images. Specifically, we use SVD [2], adopting the input
image as the first frame and setting t to 0.4. However, this
approach fails to correct the background region, and due
to the discontinuity between the first frame and subsequent
frames, it results in noticeable blurriness. Additionally, we
apply TokenFlow [14], a video-to-video translation method
based on a text-to-image diffusion model. For a fair com-
parison, we use our fine-tuned SDXL LoRA. The results
indicate that despite these refinements, noticeable flickering
issues persist. In contrast, our method outperforms these ap-
proaches by effectively reducing artifacts while maintaining
the smoothness of the video.

C. Limitations

Despite the effectiveness of our method, it has three main
limitations. First, it cannot fully resolve artifacts caused
by inaccurate 3D reconstruction, especially when geomet-
ric errors are significant. For example, the human hands
in Fig.13, first row, exhibit distortions that stem from inac-
curately reconstructed geometry. Second, the detailed ap-
pearance of objects in the generated video does not always
perfectly align with the input image. The discrepancy, such
as the variation from paper to leaf in Fig. 13, second row,
arises from the limited capability of customizing a diffusion
model with LoRA to capture fine-grained details. Lastly,
the generated video is not entirely smooth, as some small
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Figure 8. Ablation on single-stage and two-stage video generation.
The red boxes highlight texture loss and error accumulation.

Figure 9. Ablation on 3D reconstruction for background. Scene A
and B are w/o and w/ background reconstruction respectively.

Figure 10. Results of user study. Our method has the best pre-
ferred rate for all video alignment, consistency and quality on both
human-like characters and nonhuman-like objects..

flickering persists. This reflects the limitations of current
open-source video diffusion models. Fortunately, since our
I2V3D framework is general and not tied to specific recon-
struction and generation models, we believe these problems
can be addressed with advancements in 3D modeling tech-
niques and improved image [10, 25] and video generation
models [64].

Figure 11. Ablation on 3D-guided video generation vs. video
refinement. The red boxes highlight failures in refinement.

Figure 12. Generate video with large camera movement.

Figure 13. Our limitations. 1st row: Artifacts caused by the
coarseness of the reconstructed mesh. 2nd row: insufficient cus-
tomization provided by LoRA.
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